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The resolution of the problems of the earth surface and
sensing relates to the measurement of various quantitativ
elect-romagnetic field. These are mainly parameters of the
ed from the earth surface and tran-sfbrmed bv the at
the p_r_oper thermal radiation of the earth-atmosphere s

We have to mention lirst the soectral reflective rwe have to mention lirst the spectral reflective si
particular the spectral reflective coefficient (SRC).(sRC).

The SRS is a

tural formation. The SRS is a multiple function of variablr
physico-chemical and biological properties of the studied
and the conditions required to obtain the SRS (illuminati<
ditions, etc.) That is why the SRS is a multifactbrial i
cific information on the- obiects it has been obtained ft

In order to cgryplete a S_RS classifier (see point II.), it is reas
factors that define the SRS values aclording to some of th
Further 'feature' will mean a factor that alfects the SRS i

L .SRS features

surement system, etc.).

- geometric (shape, surface, structure, etc.). I. b) external features (atmospheric cqnditions, illuminatic
perature, soil and air moisture, soil electroconductivity, orie



B. Seconciary features which are the SRS valu€S, in the ind
dual channels of the multizonal measuring systems.

C. Generalized features obtained in the processing
secondary features alter being treated with certain
taxonomic, etc.). The generalized features may be grou

a) generalized primaryfeatures, fo.r example, type-ki
the taxonomic features within the natural classifica
vegetation, water, etc.
b) generalized secondary features obtained after mat
of the SRS,
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The necessity to study and classify the SRS results fr
their^ ap_plication in agriculture, geology, ecology, etc. The
the SRS applications in this respect is : to deline the rele
SRS and the other features (primary and secondary-genr

II. Aim of the SRS analysis

resolve the reverse problem; based on the SRS infoimat
lially or entirely the values of the primary features (and
Such a reversible relation is the classifier. It could be co

IIII. Specific features of SRS

The SRS are random lunctions obtained in discrete
the wavelength) under conditions of incomplete apriori

The larger portion of subject-specifying features (incl
neralizations) have joint conditional distributions in the r
of the signatures that, as a matter of fact, are not interc

Further the conditional distributions will be briefly
butions only. In this sense such features may be denoted
and at the highest level of generalization as qualitative.
spesifying features (and their generalizations) characterize t
subject only (for example, various evolution stages) a
sing distributions, but of differentiated modes, i. e. thev
external features (parameters) may have largely overlappin
ing in smooth transition of the parametric surfaces into

the necessity of introducing the quasi-discrete features. I
tual smooth transition betwr en them, the probability of
defined with the possibility of identifying various states of
their set of features.

Another important specificity of the features is that t
nitudes in terms of our lack of knowledge on their e
progress of the experiment.
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ficant aqcompanying noise.ise. These specifics require the i plementation ofticant aqcompanying noise. These specifics requir
tistic-probabilistic techniques for the SRS analysis.
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Fig. 1. Discrete and quasi-discrete feature
distributions

xb Jcz - disctete features ;

" 
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x1 t a2 - quasi-discrete teatures ;

/ - dlstrlbution denslty ;
0 - patameter

b) The SRS are random functions due both to the
here and in a), as well as to the impossibility to study
affecting the SRS. 'Ihis problem will be discussed in detail

IV. Major problems

.A,s it was already mentioned, the main purpose is to define the lationship betwee
of this relation

of approximatio
to this task could be formulated as follows:

a) The primary leatures (and their generalizations)
inaccuracy of the measuring instruments and insufficient v
sentative samples in the course of the experiment.

the SRS and the other features. The precise analytical
ship still seems an irresolvable problem. The various

Physical model o/ S(S.
At the availabl6 state of

particular relations between the
results attained by now do
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on in the
case, when both the features and the ndence value the SRS irr this c
are random variables [1]. The Classifier procedure req to know these
fidence legions. RelativCly easier is the problem of reg ion coefficients
termination. This can be done using, for example, the thod of the maxi
likelihood [1], the method of least squares [2], etc,, and
between the l-th comDonent o,f the SRS r vector and

fegressron ls t
between the l-th component o,f the r vector and a the ft-th com
of the c vector of the features, k:1, . .. , Kr;:f (c11,..., cr), i:I,..,, ftr-channel number for

The confidence intervals of the regression may defined with cer
for the ind

f we can ensure
iation coefficients
t of an order sm

than that of the SRS.
compare the

y features (incl
rors 0, of the ve
ions). If 0 is assu

Statistical Model o/ SRS.
This is realized with the determination of the regrr

face in the multidirnensional space of the feature) bet
ve deoendence

SRS and a g
set of primary features or their generalizations. There no availableseT oI pflmary leatures or tnelr generalizatrons. I hel
by now to define thc confidence regions of such a
case, when both the features and the dependence val

inaccuracy with the available techniques (which rdqui
variables of the regression to be determined variables)
the relative variance (measured for example, with the v
|fe pljm.ary- features^(and their generalizations) is at le

The evaluation in this respect may be obtained, if
of the relative errors 6o of the vector c of the prinol the relative errors 6" o! the vector c of the prin
lheir generalizations) and i.he vector of the relatjve
i (tr, c) of the secondary ieatures (incl. their generali

pectively (p. A for 0o and p. B for 6,):
A. a) Test field measurements:
i. Errors from the measuring systems.
ii. Errors from the interpolalion and extrapolation

such in order to receive statistical representation of the
rements of sufficient coverage cannot be performed.

b) Remote sensing (helicopters, airplanes, balloons,
i. Errors from the measurement systems.
ii. Errors from interpolation and extrapolation
p.A. b).
B. a) Test field measurements:
i. Errors from measurement svstems.
ii. Errors frorr insufficient kn-owledge on SRS yield

in evaluating the illurnination conditions).

RS.

to be measured with the variation coefficient, then 6r=
average value of the l-th component of r, respectively c,

,/p1, where p, is
S, is an esti

of its mean square deviations. Basic sources for Oo-and 6. formation are

f the measured d
when studied areas are large and with various conditi (and they must

ta), therefore mei

for

tellites):

measured values

ng conditions (m

not all the intri

ng conditions (ill

iii. Undetermination of r in the result oi the fact th
and external features are included in a,

b) Remote sensing:
i. Errors from inaccurate evaluation of the SRS

nation, atmospheric state, etc.).
ii. As in B,'a, iii.
All the features

from r (but they also
cause-effect scheme.

incorporated in c (if properly sele
might be interdependent) and affec

ed)
the

are indepe
f values on

Present experience shows that the q and r t distributions
close to' normal. From the definitions in A and B and
the following conclusions can be made:

experience acqu
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c.
6aaz is

D.

6;ar and 6naz ate Comm€nsurable
commensurable respectivelv with
6aar and 6aar ar€ iommeniurable

respectively wi
6.qar.

dnd 6aar, arid

respectively with nz and 6,qoz.

Ftg. 2. Confidence regions of regression surfaces
4 - three-dlmensional regresslon surlace iancl tts coalldence
reglon S)R.
D - two-d|nenslonal projects of conildence regions e Rl and e
and thelr cross section f)4r.r,

The errors from D are much larger than from C. The
tal possibilities provide for a significant ieduction of 6

c on test field data, if a sufficient number of well
available with 6p is at least an order smaller than 6aoe.
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to the other 6 from D. Therefore, a regression with con
termination can be effectively traced (at least at present)

The possibility to obtain regression with a confiden
not lead to an easy practical application, at least due to:

1. The confidence regions Oo (Fig. 2) arc defined fo
face parameters and the cl-assifier"requires'the confidence
dual result Or:flp fl Or" to be known, where O7" is the
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2. The determination of O" and O15 is related to
a iir i cuu i e s. 

-r-is. t-;;;;. i'r' J'f ,#'l t"i$, 
""at 

Hi"'.jlrlj
two features). Even in this relativelv simnlitied case thtwo features). in this relatively simplified case the a
tively the automatic) determination of Op is significantly
add to the necessity of plotting the fla projections over t
axes the necessity of knowing the confidence intervals ofaxes the necessity of knowing the conaxes the necessity of knowing the confidence intervals
meters (features). Additional difficulties result from the
Certain facilitation may be achieved if r is obtained as
the multiple resolution elements (RE), each of a dim
the least possible RE, already marked with the properties
Then $2r., will tend to Oo. This case reveals the 

-probleThen $2." will tend to Oa. reveals the proble
minimum RE dirnensions.'Anvw

which the optimal RE dimension is defined in the cour
Certain general methods and instrumental requirements f

mlnlmum Rb, dirnensions. Anywav. such a oroblem should
ral prior to the large-scale SRS 

"measurements, in order t
class or theme of classes (although approximately) the o,
in agreement with beforehand selected criteria. In [3] there i

ground-based studies of SRS arc given in [4,5],
Another problem related to RE of SRS is the case

sion. Under proper selection, if possible, i. e. if a platea
limits of the studied region, the problem does not exist

or more thenatic classes is available in RE (i. e. such
to the interpreter) and a separation of this mixture is req
separation of SRS mixture is a problem of two main asp,

- separation of a mixture from SRS distributions
set (pixel), within the limits of which RE there is no mixt
rent classes. and

- separation of SRS mixture, obtainert within the li
The first problem is closely related to the selection

level. In the reversible case the SRS distribution from va
in polymode. Under defined ronditions, for example, ide
tribution type, the component number determination is pe
known methods [6].

The second problem requires solution when two o
classes are mixed within the RE limits [7,10] and their 1

tion is sought (weight coefficient) in their collective SRS.
sented, for example, with series of agricultural crops di
The problem is solvable in the statistical sense, if the clz
ber is known for the classes participating in the mixture
Then the confidence intervals can be deiined for the wei
sufficient channel number in the SRS measuring system i

In conclusion we mav sav that the elaboration of
tion r (1, c) is still very difficult both on methodological
puting level. Therefore, in near future it is possible to
regressive dependences of largely limited c dimensional
consider that even so the information will be useful for t

Probabilistic -s et c Las s ifier
Ihis classifier is built by comparing the confidence regions
and their generalizations with the confidence regions of t
formations. The adequacy of this comparison with the a
rnation, as well as the updating rvith the experience acqui
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the interpreter. Ttris appfozich is
features mainly. The major stages
classifier are:

a) training - with and without supervisor,
b) classification and new information accumulation,
c) updating,

. d) dirnensionality reduction of the featUres space in
class set.

Further, a largely simplified scheme of the SRS classifi
is compiled within the attempt to balance the two basic con

suitabie for the discrete
in the compilation and

ments: application simplicity and suificient accuracy of the
The following exposure contains in brief and in a

the fundamental information for the structural units of
and also a brief comparative analysis of some available met
related to the discussed problem.

V. SRS Classifier

1. SRS Transformations

The basic criterion of effectiveness for a given transformatio
tion Q (Appendix 1). In a iixed set of classes the transfor
ces ,Q to a higher degree should be adapted as more eff
tion of R in most of the cases is difficult. Some indirect r

that are used as alternatives in first approximation of 1] lir
functions ol the intra- and interset clasG distances (clusters
thropic criteria, etc. In the case r,vhen the class distribution
mal we assulne as the clearest and in many cases directly pr

tionship between the variation coefficient V of r (by comp
:c,,f r;, i:1, .. . ,tfl - channel numher of SRS. Firither ;i' "it will be preferred as a neasure of effectiveness Ior the t
ing R. The main types of transformations that are availab

l.l. Orthogonal (expanded by orthogonal functions).
a) non-eigen systems of orthogonal functions: Fourier,

Vilenkin-Chres=tenson, orthogonal p5lynomials, etc. No direci
as to whether the use of these expansions coefficients as r
transformed space results in 11 reduction. It rnay be demo
lar that for the Fourier transformations such a 'reduction 

i
(see Appendix'2).

Another defect of these transformations is that when stee
available (for example, vegetation), a iarge number of expa
is necessary which increases the dimension of the transfo
these transformations assume that SRS are oeriodic functio
mlse_with reality which results in description inaccuracy.rrr-rutr 

. wlLlr rcalrLy wflrcrt resurls rn qescllptlon lnaccuracy.
b) eigen systems -- transformations of Karhunen-Loev

version a method of the main components). The advantage
mations is that no SRS periodicity is required here" The di
that fhe eigen systems of the j-th class is optimal with resl
mic class description only for 

'this 
class, and not for the o

the classifier set examined. That is whv, the switch-oft of
after the analysis of the given class in its eigen system n

nd quasi-discrete
ration of such a

given thematic

r is applied. This
radictory require-
lassificaton.

eralized form
the suggested scheme

s and approaches

is the risk func-
ation which redu-
ient. The evalua-
teria are known
r and nonlinear

respeciively), en-
are close to nor-

rtional the rela-

nents) and Q:V,
, when possible,
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alsh. Hadamard.
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R within a given situation of the class description in
is possible to identify well some of the classes precise

1.2. Autocorrelative transformations (some form
dlx,5).

ed space not larger than that of the primary space;
of r in the transformed space is smallei than- thit of

out the ambiguity of the transformations II and IV in
autocorrelative functions may be derived from various

afe n-

The advantages of these transformations are: di sion of the tr rm-
variation coeff ient

ple calculation operations for transformation. As a di
primary space; slm-

set
yln

vantage we may
the sense that

unctions. But thi

e, it
ls).

int
^lal

atrt-

and
the

biguity includes a class of symnaetrical functions to t coordinate axes.orgulry lnctuoes a class oI symmetrical tuncttons to
such symmetries cannot be iound in SRS of the natu I formations over
Earth surface.

l.3..Fnthropic transformations (Appendix 4).

.it is already _known, they are iealized in eigen
13], and, therefore, the summary of p. 1.1. refers tJ t

1.4. Divergency transformaiions ^(Appendix 
4).

They lead to the optimal results in the sens'e of
divergency only for a given couple of classes and, ther
of the eigen transformatioirs from p. 1.1. In addition, th

covariant rnatrix of the classes [9].
1.5. Metric measures for similarity and distance o

to rs-realizations.

de into: (A) Euclidian; (B) Mahalanobissian, etc. ; a

According to the type ol the distance metrics, the
rto: (A) Euclidian; (B) Mahalanobissian. etc. : ar by the optimi

inimizing the de
ore, the disadv

involve a very
ge number oI calcuiations, and information losses in t real case in un

coordinate syste
m also.

mization bewteen

transf ormations

ximizing interset dis-

tion
afe
ns-

ned

?ge
lar-
tual

criterion into : (a) minimizing intraset distances ; (b)
tances, and (c) mixed,

lormations lead also to enthropic transformations. The
Fisher transformations [13] use the exponential function as
ses with the expansion of the interset distance and the rev

i. Complex (in the sense of a certain criterial function)
[9, 11, 12,J3] and ii. Serial realization of a) and b). U ually (A) methods

distance optimi

based on linear transformations and relate directv to (a and (b). (A, a) t
on-paratnetric Pat

crlterion that i
rse, and relates to
two: they have a <

formation matrix,
provide possibility to improve the class separation in t sense of the def
criteria, but without a direct link with R.

o not guarantee
it possible to ev

T'he advantages of these transformations are mainly
pleted analytical technique for determination of the tran

ick-
rea-
(c).

om-
and
ned

ate
wo

Ia-
nd
of

The disadvantages are grouped into: i. criteria (a)
rately the obligatory decrease. of ,Q; ii. criteria (c) make
in explicit form the increase of the class separability
classes, while in the general case of many classes (1
ry space is populated with a large density, it is difficul
hand the effect of the global distance change between
crlption of other metric and non-metric clusters-algorith
The possibiliiy for their application in SRS classificatior

estirnated by now for the primary space only, and not
transformations (These translormations also relate to simpl

to evaluate
realizations.

is given in [9,
probably sm

than oI the techniques discussed here.
This brief comparative analysis provides certain vantages of the a

eorrelative transformations, because it is possible to in with them
versai (for the complete class set studied) impro t of the class
bility, measured in ihe first approximation with the vari tion coefficient V

ially when the pr ma-
re-

y when there are

r the other t

1 11.

ller

computing operati ns)

trodL



As a general disadvantage of all the mentioned transfo
note the absence of a clear analytical link in the general

ations, we shall
of unequal co-

rirnary and trans-
n be evaluated

ration, direct cal.
class set with a

is large, Jor ex-
variation matrix
zero (in the case

smaller than a

exceed the up-
number of r, is

ing due to scale
th a suitable and
S to its nean

stem and loss of

variance matrices of classes between the risk function in the
formed sDace. Due to this the transformation effectiveness
only appioximately in an analytic mode. After the translort
culations of Q must be performed for each beforehand giv
theme comoiled in the Classifier.

2. Transforrnations to aztoid ill-conditioned cooariation

When the channel number of the system for the SRS yie
ample 32, there is a possibility for the determinant of the
of certain classes either to become smaller than the compute
when the SRS are reduced to spectral illumination coefficie
unit, and therefore, with dispersions oi the 10-1 order), or

3. Subtraction of subnatrix

A possibitity of reducing the input matrix {rom dimensions
sion(m'Xn) is foreseen when it is possible to decrease dimens
mary space of the features.

4. CLuster anaLysis

larity. The quantitative expression of this criterion is the I

Usually it is selected as 'distance' in space apriori selected

groups : (a) subjecting the measure of similarity to threshold
realization of non-equalities, and (b) optimizing the selecte
measure, in order to define a criterion (most often for this
formations from l.5.areapplied). There are tens of well-know
(nearest neighbouring maximum distance, ISODATA, etc.) [

the SRS their number will be larger than 103, it is recomme
application of more simplified cluster-algorithms) mainly thr

information for the mean class vector, except iI it is not in oduced as nn ad-
ditional feature. The transformations discussed are not effec
terminant is ill-cor-rditioned in structure.

ive when the de-

(nt\.n) to dimeu-
of the pti-nality

It is applied tor grouping the input data by some forrnal
re of similarity.

rics (for examp-
le, Euclidian). The following procedures divide the cluster rithms into two

alues through the
function of this
rpose the trans-

clustecluster-algorithms
12,l3l.The com-com-

putations of inter- and intraset distances is periormed m

lrom (b). These operations make dilficult the algorithmic
numbe-r of vector-observations that are subject to clustering
[121. Since in the real case of remote sensing data (and even
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5. Automatic controLs

5.1. For cluster population: if population is less than
user) the cluster is not analysed and is entered into

the cr
the

ical (given
mory.
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5.2, For normai cluster tlistribution : in satisfyins
given criterion of normality the vector-onservotlon's 

-?or

passed for the calculation of an average vector and col

Based on average vectors given by the user, a set (

vectors rs obtained, i. e. classes of normally distributecl
Such data file is necessary for the cornpu.uiiu" study o
various transformations oi other programs when the iea.
sufficient.

5"3" For ill-conclitioned covariatiori matrix.

6. Normal distribution simulation

7. Compilation of cLassifier

tor and covariation matrix. Afterwards the information

formation is available on the class distribution, their a
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normally distri
vectors are mode
the effectiven

data available a

tor control of
formed by the

tion of average
storaged in the
ce on What ty

when apriori
probabilities

7.1. All clusters satisfying the controls (incl. the op(
tering accuracy - see explication in 7.5) arid all classer
at the input of the main program are passed for compu

7.2. Stonge cla-sses limits : (a) with Bayes approach the limits depe
the set of classes which at a given stage oi classifier c
ed in determining the risk function. This approach ensu

lation are c
minimum risk ftion; (b) in beforehand limitation of classes.

i. Multidimensional confidential naralleleni. Multidimensional confidential parallelepipeds with axes parallel tor. lvluruutmensronal conll0enuaI pafalleleplpeds with
coordinate axes and multidimensional confidence ellioso whose axes

(after a traibeen obtained with sufficient statistic material for flre c
procedure); in this approach the computing operations a
but the value obtained of tt e risk ft,nction is not minin um. Anyway, solu

Iargely f acilita

of R.
this case - the

gion of a given class is lacalized, witfr timitatil;";1' of the multidi
ated to the fo

- even when the discriminators are linear at a cla
20-30, the oblique multidimensional linear surfaces are c

number larger t
mplex and resul

ctf SRS classif
ion should hard

- probabilistic evaluation is difficult for the classi
over that the larger part of these algorithms do not per

ication quality,
it probabilistic

Iuatron and become cycling when the classes interc (an exception is
thms for obtainir

sifier. The storage may have various variants in depen
transfot'mation has been applied for its compilation.^

may be looked for at apriori given admissible upper lii
ii. With linear and non-linear decision functions: i

sional planes and non-linear surfaces. fhis approach is
significant disadvantages :

an inadmissibly large number of computations; in the c
tion, the class and subclass number subiect to identific
smaller than several tens :

algorithm of Ho-Kashyap [9]); iii. In the statistic algo
decision functions; stochastiC approximation, perception*a1
tions, etc. ln this case the convergence of the algorithmr

lkl,i: :XI .lo*.[9]",This disadvantage will be rfanifesJe

Due to the disadvantages demonstrated, the further
der the limits defined in (al b. i).

7.3. Risk function computations. Case 7.2.a is com

roach, potential f
to the Bayes cl
particularly st

in the SRS classification when the dimension ol the ture space and
class number are of the order of several tens and this i the real situatio

procedure will

tted
iori

ta

are

ted
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the loss matrix. Advantages : minimum Rruy., is guaranteed' D
the apriori information -is not available, assumptions tn si

needed to be adapted and to be updated in the process
finn Anrrhnulrxrhcn lhe form of distrihtttion can be asstion. Anvhow, when the form of distribution can ASSU

certainty (in this case the experience acquired in SRS is
16]) and there is a possibility to increase the repres-entativ
luriie required, the Bayes approach is recommended [17].

Case 7.2.b has the following advantages as compared
stant limits simpliiied computation; and disadvantages : ,

not minimum at the expense of the cutoff 'tails' of the
formulation of the class constant limits. The upper limit
calculated with the 'tails.'

7.4. Classification oi newly added vector-observation
the newly added observations to a certain class in the C
none in particular) is clelined rvith the verificaiion of the
in the case 7.2 as obiained with the principle of maximu
the case 7.2.b, i - from the class limits.

7.5. Classifier learning. In the scheme suggested the
lized as follows :

[Jnsuperaized learning: through the cluster program
the introduced formal criteri rn in them for similarity bthe introduced formal criteri rn in them lor slmllarlty 0(

Superoised learning: (a) at the output ol the cluste
interactive mode the operator controls the ciustering qual

erroneously grouped observations, based on the available
(b) At ttre input 

-of 
the najor program : through apriori 

. 
c

iitis, tor example, from test field'measurements; c) upda
fier storage. The verification of the normal conditions guz

ry closen6ss of class distributions to the normal in the cl
refore, guarantees the Bayes mode of learning of the ave

ple volume tending to infinitY.^ Ihe superviseE learning is perforrned with apriori i
parison between the confidence SRS regions (and their
ihose of the generalized features.

B. Qeduction of the feature space diruension

In many cases the identification of a given set oI cl
with a beforehand given identification quality (Ior exampl
sible maximum R value), with a portion of the inlormati
experiment (for example, with the SRS -values of some ch

lution of this prbblem results in both direct economy oflutlon oI tnls proDlem results III DU[Il ulrtreL cLurruruy ur
optimizatiorr of the technical problem with regard to the
aird their exploitation capacity. The result from the resol
lem may serve as a criterion for the effectiveness of ce

tions. Some Basic methods for the reduction ot dttnensto
are given in [9].

The precise resolution requires a study of the compl
subsurfaces forned with the subset nf features (prinar
a definifion of those combinations that satisfv the s€
subsurfaces forned with the subset ot leatules (prlrlary i

a definition of those combinations that satisfy the selec

classification quality. In the general case of unequ
ces and non-linear decision functions this problem is diffi
regard to the computation efforts involved. But if we as

ria"tion matrices, 
^ 

though unequal, are diagonal (of



those of the real niatrices) and the classes are limited wit
parallelepipeds, includins ihe confidence elliosoids whose A

DrnaToncs program. 'lhe restrictions introduced in the reso
lem in this case result in the 

-f 
ollowing: if the progrur- p,

that given subset of features is sufficiEnt for th'e ciassifi
set of classes, then this conclusion is preserved in the
th.e nondiago'al covariation matrices, but the risk f;;tio?will be smaller. The reverse answer that the given feature
cient for the set class recognition at a lixed "value, is not
nondiagonal matrices the same result will be preseived"

9. loupling of classified, reaLizations uith geographic c
and contouring of the spectraL hontogeneou"s rZgibns

In order to resolve this problem, it is necessary to pro
code for each vector-observation through which it " 

ge5g,
RE c.an be compared.. With :he help oT plotter-p;;g;;;l
coordinate system, the coordinates of att ttre ^obiervation
are plotted. When simultaneous visualizations are neederj
than one class, several well distinguished symbols are use
of the geometric characteristics of the cont"oured regions ca
upplementary programs : perinreter, surface, formfa&or, eti

multidi
es are parallel t

trices, then
ossible solution

the classifica
ed with the com

ides an an
on of the stud
eral case also fo
n the general cas,
ubset is not suffi
guarantee that

ic coordinates
a two-dimensiona

of a given clas
(graphs) of mor
Ttre computatio
be provided wit

All classified and unclassified realizations entered in the clar
ed .acc,ording to the type_ of the classification progrr*, ieonal ellipsoid, etcJ, and the type of the apriori SFS transtvrrqr 

rLrrryovru, Err..ri auu Llle rype oI Ine aprlorl JK> transl
Alter accumulating a given quantity of such data the u

ed (on user's request) -in two directions":
A. With the already classified observations the avera

covariation matrix of each available class in the storage isable for the purpose to use numerical moclels for brfei co
approach assumes the implementation of nonmarked traininlin the classification of new observations, i. e. for which
known to which class they belong. Therefore, if in the- cl
the input of the .program the ma-i<ed training sequence is
from the unclassified observations cannot be" useb for direc
lution surface parameters. This may be performed, if the teilc approxlmation are applied for the iterative determinati

10. Classifier storage updating

meters.

forming classes it is possible -to obtain as an interme
SR.on"L.1l,qrt" when the nonequality MlM^,* exists. This is d

B. With the unclassified realizations to any classes in
also with those that have not satisfied the automatic contr
an inplt {il. jr c_omposed from them and the complete tra
formed with it. Here it is possible to produce new classes.

" In the process of compiling a tlieinatic classifier oj fin

ler afe lTlemofl
yes, multidimensi
rmations.

vector and
pdated. It is advis
rputations [9]. Th
sequences of SR
it is not aprio

cation mode
I, the informa
updating of r

iques of stoc

the storage a

ls. For the purpose
ning cycle is per

e number 21y'

iate result
to the followi

Bayes SRS classifier operates witir theoreiiiit normal distrib tions that are

of the pro

accompanyln

ating is perform

of . these para



fined in the interval (- -, o") for each of the features, Aing stage (no updatirig was made) the class number is zl4
case at the recent stage of knowledge on SRS not always

er the first learn
M^u* (in the real
e apriori precise
themes). On the
I case of space

) M+j-tn classes,
nce between the

n frrnnlinno li*ii

e available filling
nuitv of the nor-of the thematic feature space. Due- to t[is and alsi to con

mal distributions in the intervalS (-*, oo), the Bayestlecii
ing the available classes pass awdy from ihe class centers.
increases for observ.ations-belongirig tb the zl4+/-th class
belonging to some of the M-thclalsejit M+ j-th if6., i, 

"ios.classes. Such an error of II gender can be- reduced,, if the
ses .are limited with, for. exanrple, confidence ellipsoids or
smaller size and not with Bayes functions, but anyhow su
the cutoff tails of the normal- distributions would 6e admis
of I gender would not exceed the apriori limit. Then the
zation from the M+ j-th class to enler some of the M.th
ably reduced, except for if inaoly. reouced, except tor if in general the l,f n7'_16 .1ur. d
largely with some of the ,,14-th classes. After reoeated uodafin

the volume of the computation efforts under application of
for SRS classification, may be generalized as fbilows :

targery wlrh some ot the A4-th classes. After repeated updatin
be refilled with new classes and when M - fu_^* thbn R
ensured. Therefore, *tr* -it'" ;pd;ti;;"ir ;.Til;;;, "jlM,aua; b) with data of no apriori info-rmation as 1

the M-th formed class only, if is recommendable to
lM,aua; b) with data of no apriori info-rmation as to whi:
the M-th formed class onlv. if is recommendahlc in nnmnl
uslfrg conJidence ellipsoids or parallelepipeds ancl only un
criterion for this mav be the absence bf new class formaticriterion for this may be the absence bi new class formati
updalng within the theme) to apply the Bayes clecision fun tions.

For the given confidence deCision functions it is e at fixed valueM (by number and class content) to minimize the risk'func ion [19]. Of cour-
se, the. minimum &,rn thus obtained will be larger than rQ
belonging to the ulrl-th class are entered only.

VI. Program. package for classification of spectral
reilectance srgnatures

Yh.T determining.-the structure and the content of a progred for the classification of snectral reflectance siol'a'+,,rfoed for the c ation of spectral reflectance signatures
siderations from both general and particular nature"must besluerarlons rrom Dotn genelal and particular nature must be
unt in view of the package effectiveness: scientific, econom
Some of these coniideraTions were discussed in therorle or rnese consldefatlons wefe dlscussed in the previor
derations, related to the experimental specifics of SRS obtai

rurrneu lvl clas-
parallelepipeds of
that the sum of
le, i. e. the error
bility for reali-
ses is consider-
not intercross

the classifier will
yes-Rcorst will be
nder condition M
:r they belong to
e the classifier,]
lr M-M^^* (the
r after repeated

if realizations

package design-
RS), rnultiple con-
taken into acco-

and applicable.
chapters. Consi-

ing and affecting
program package

for classifi- 
]

are applied
from indi-

the limits of the
s of the order of 

]
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1. In the real case of satellite and nonsatellite informat

vidual elements of solution.

cation or for learning files, thousand or tenS of thousan
(vector-realizations in multidimensional signature space) as o

use
SRS

ained

2. Class and subclass number that is interpreted within
thematical classifiers, for example, for agricultuial purposes,
several tens.

(.



3. The dimension ol the primary feature space
multispectral devices) in which SRS are obtained is
contemporary technical provisions.

4. The SRS distribution is in most of
normal, due to which there are grounds to
thods elaborated for normal distributions.

classification and updating. According to the selecied alg
tion of the class characteristics, these three modes may be r

sample, but this involves larger computation efforts, that
account due to the considerations in L 2 and 3.

It follows from the considerations 1. 2 and 3 that
ase in the dimension of the feature space, where the S

the classification quality [9]. In the general case when t
of the classes are not equal, the relation.ship between tl
the various criteria for classification quality is establishr

sification that are more precise than the cluster-algorith
discriminant functions (hiperplanar, etc.) and provide por
evaluate the function of the average risk.

space, the average vector and the covariational mairix
algorithms for their updating, etc. In l27l an accelerated
ed for classification by Bayes through replacement of

and a,i and b,i are the limits of the hiperparallelepiped
limits may be determined differently, for example, so t
fidence elliosoid should be inscribed in it (determined

hannel number of
veral tens for

the cases iciently close to
apply the res tive statistical

tions in the t

necessity of te-
classilication or

1111-

^+aL-

on

rix is used in

c. In cases simila
ix is no more

ecl-
ua-

X.
ugh

uations

(the
also

The major operational modes for the SRS Classifier usually are: trai
ithms for determ
alized both parall

in sequence, for example, the techniques of the stochast approximation
re parallel performance of training and updating to achie
formation use for the incrorrectly classified marked reali

e more complete

must be taken

18'
td-

or
ui-
in-
ng
rto

ne
beof their transformations is performed, should be also co idered. This can

realized through appropriate SRS transJormations and ermination of the
set) and thus to
another criterion

nimal feature combination (under beforehand given class
tain the given threshold value of the risk function or

covariation mat
risk function Q

rather
after reduction of the feature sDace.

Consideration 1 should be taken into account whe
algorithms with preference to those where the training
ries, column by column, with nb necessity to be kept

selecting the clu

irely in the
tional memory, as is the case with the cluster-algorithm
criterion lunctions from intra- or intergroup distances, e

the latter, the acceptable dimension of the training mat
I 000-2000 vector-realizations.

that optimize

Consideration 4 makes possible the use of probabil tic methods for

d
J

ter-
se-
\a-
the
to

han

as-
red
or

bl

or the deter
ibility to comput

Accelerated computing procedures are applied to ot
matical functions as the probabilistic integral in the m

ain separate nl
Itidimensional fea
f each class and
procedure is s

ed for classification by Bayes through replacement of
sion functions in the course of the Drocedure with sim

some of Bayes
r crlterlon non

lities, and also through appropriate transformations of covailatlon ma
Significant alleviation of the computation elforts be obtained th

the application of the confidence hiperparallelepipeds as
procedure of classification. In this case, the verification
vector X to a given class is initiated with a system of

a
of

prefilter to
the belongin

yes
oI

(1) ap3Xi'<bii, i:1,. ' ., rn, i:l
where m is Ihe dimension ol x. n is the number of in the Class

he-
ure
the

f the 7'-fh qhrr.
t the respective
at a given confid

level) or so that the shaping edges of the parallelepi would eoual the

fier,
rese
lon-
:nCe

res-



pectiw main axes of tlie ellipsoid (then the latter will
the hiperparallelepiped) and so'on. In agreement with co
mensions of the ellipsoid can be determined on the basis
tribution. If under a fixed 7' at least one of the non-eq
fille"d,. then _the-.ve_ctor x does not belong to the 7-th'confidence level). In the reverse case thle answer ihut
class is not absolutely positive, because it is possible tha
lelepiped would have section eio+O with anoth er k-t
Under a built thematical classifi6l the indices k of
9rl#.0 ghoul.d be kept in its memory for a given j and
lished. that the system- (1) under fix-ecl 7 is s-atistieh try
should be performed for those values of ft onlv for wh
the classification with the help of hiperellipsoid may be 

1

requtres. simple_ computation operations without necessity
halanobissian distance in a prestage and, therefore, we in
fast action of the procedure described. It is possible whe
amount of closely located classes in the Ciassifier to rof the upper proiedure with the one susested in l27i
(ivhen it is established that x satisfies (1) ;nd O;oaO tdr
that will result in a greater acceleration 6t ttre ciiriitvins
in the qase when the covariational matrices of the clisse"s
that differ in.between.

example of the structure of a program package f
t3king into.account the above-mentioned considerations,
The denomination of the subprograms and their destinatio

incorporated into
eration 4, the di-deration 4, the di

ass (under select
belongs to the Ttth
the 7'-lh hiperparil-

ated data for cdr-
ermined covariatit'mrneo covarlatlon

computation of the
rparallelepipeds apd
fication with hip$r-
subprogram for di-subprogram for di-

for yielding in X+Y

matrices, '( of tn matrices,.K of the
on the input rratrik;
the transformatiohs

Te

1 - input matrix of data i 2 - multiplication of
constant number ; 3 -, cluster-algorithms ; 4 - SRS trans
plicatidn of vector-column by normal larv; 6 - verificati
cluster-formed distt'ibutions; Z - determination of a mean
tion matrix of the normally distributed sets of SRS vect
formations; (7t - throu-gh initial training tile, 7, - throug
chastic approximation, 7s - through updating with accurn-
rectly classified vector-realizations); B - control of ill-d
matrix ; 9,.- com.putation.of the risk function by Bayes; /0
risk function under decision surfaces, composed irittr tri
hiperellipsoids; 11 - classification by Ba-yes ; 12 - cla
paraUelepipeds and hiperellipsoids decision surfaces ; lS _

nrension decrease of the feature space; I4 - subprogram
spatial coordinate system (plotter)-of the vector-riallzati
class.(spectrally homogeniour regions).

File F contains the mean vectors p and the covariati
formed classes as follows: 0r - without pretransformation
B2 - after transformation of the input matrix with some cin subprogram 4 i Fa - after fuliiiment of subprograms
ment of -subprograms 4 and 5; Fr- through training mat
ses are formed by blocks.

File a contains the vector-realizations for updating.
In o, the information from following groups is sto-red
.a) clusters, where the quantity of realizhtions is sr

nu_mber pregiven by the user, the value of which is deter
offithe criteiion of 

-normality in subprogram 6;
b) clusters that have not satisfied the requirements f

is shown in Fig. 3.
r are as follows:

the method of sio-



c) clusters or sets of
progran 5, oJ through the
or sets have ill-determined

vector-realizations, determined
training matrix, determined for f
covariation matrix.

Input

as classes
p. These cl

0ut
for a I reIective

ified to any of

the classes
rmation by

Fig. 3. An example of strucLure of program package
signatures (SRS) classlfier

Information on the vector-realizations that is not cl
classes in file B is stored in or.

File or contains vector-realizations classified to some
B (information of the field number of file B together with
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subprogram the classification was perforrned: 11, respecti
this infortnation is used in the updating).

Through the various states of variables ](r, . . ., Ktt,
operation is determined on the user's request.

Principal modes of operation of the package are:
Training.

that pass through subprogram 3 (possibly in combinat
the variable K6 the operat< r may verify the correctn,
based on the apriori information available, and then to e

a) With teacher: this is realized with marked traini
the final result is the formation of the classes in Fr, 02, Fr
of the risk function for the set of classes obtained;

b) Without teacher: this is realized through unma
real case suggests operational conditions of incomplete

introduced vector-realization in a given clusier from t
to start again the selected sequence of subprograms with
formed; the final result is the formation of the classes in

c) For research purposes files Bs and Ba are used in
are formed through subprograms 5, respectively 5 and .

the possibilities of the various types of transf ormat
to the size of the risk function and to the decrease in t
feature space (for the purpose subprogram /5 is used).

CLassif ication.
This mode of operation performs the classification of

realizations through subprograms 11, respectively 12. lf.
performed in field B2, the vector-realizations are beforeha
the .transformation lrom 4 through which the classes in B.
Finally decisiorrs for the belonging of the vector-realizations
and the vectors are sent to cl1, respectively to o,r, for u
characteristics (using the stochastic approximation, the
formed in the real time mode).

Updating.
The updating of the classes characteristics (mean v

matrix) from file B is perf ormed in two modes :

a) thtough formation of an input matrix from data
of the two files after which operation is performed as in

b) from file o3 in 7b, respectively 7r,the vector-reali
considering the field of file p that is updated. File os con
responding to those of B and additional subfields in respe,
ram II ot 12 was used to oerform the classification.
dotted-line in Fig. 3.

'Ihe first version of
the Central Laboratorv
erices on FORTRAN IV

the above-described program
for Space Research at the Bu
and r ASSEMBLER languages

of OC/EC.
Chapters I to IV

V is based on work

Conclusion

The approaches examined (major tasks) are of downward

are composed based on works [25]
[26].

ity, resulting from available possibilities : physical models
probabilistic-set classifier. Undoubtedly, the physical mod



sirable result for the experimenter and the intet'preter, butin longterm perspective. The general regressive models
,?ra.9tige by now, although pjrtial solution -is acceptable i
limitations as given above. 

-'Ihe 
closest relative peispectivr

applications on a larger agricultural scale is that of the
though the absence of sufficient apriori information and the
ric effect and other noise sources reduce its effectiveness.

Appendix 1

Qisk function 19,12)

Each SRS is represented as z-dimensional vector r : {
channel number. The comoatible bv a qiven rrilerion "f 

.,channel number. The compatible by a siven criterion of
form the ft-th class of podulr tion : 

-N,. h:I. . . . . M. i:7form the ft-th class of populr tion : 
-Np, h,:I, . . ., M, j:1,

Consider the set of r14 classes. 
'ii:t- . . . . M eact ,

rne E-tn class oI populi ltoni Np h:I, .. ,, M, j:
Consider the set oi lI classes, k:t,.'...M eich

normal distribution f (rlpu) in _the space of rr7, i. e. each
wlth-an.average vector pu and a covariation matix I(0.

With ce, we denote the losses due to the case when
decisions for availability of subject from the l-th class, wis a subject from,the E-th class. The elements co, f.orm
losses, l:1,. .., M.

We introduce decision surfaces So, for the classes ft
to have error in unifold classification (of one vector r) is

pnr Ivntf (rlp)dr,

where 7p, is the volume, in which
average value of cu, losses from all

(through Sa,) the tr-th

ed classification (for many vectors r)
ed from

combination (k, l) and
is called risk functi

,MMR:zfz
h:r fht t:l

pucotf $f 1t,) dr,

where po is apriori probability oI the ft-th class.
. p-..uilty it is assumed tliat cnn:O and cu,:ifletfl:c, i.

classification occur.s and in incoiiect classifidation all the
to be o{ equal weight with regard to the losses. Under t
tion ensuing from the principle of maximum similarity it
tions for s'kl are :

(1) Su, : Ln#*t, 
|Kn!&t - ![tr_.vo),x;, (r-Fu)-(r-,,,

Equation (1) ensures the minimum e value.
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Appendix 2

V.ariation coefficient of the Fourier se.ries coefficients
linear approximation of discrete SeS

SRS are obtained in discrete
number, for example, nL:32,
In this case the coefficients
are expressed with [21]

I
u r,- 

--En " k2n^ \A/-COS r h,_r)

h^
2 sin ? Al. rl

-- 
r \-(r--' '^"'lk2n'^ '!n- - nttr;?, L \t i-fi-t;stn I r (^,+Ii-l

i:1

V/e assume that ri are normally distributed rando
persion o?:q'p? where q47, Ior example, 0,03. Such an
g1^op^o1!io1 between o and the average vector p we introdu
[8, 20] of the comparative analysis.-We assurie also that
function of period f. In reality this is not true, and in
f ourier series of r(^"), we have to assume that r(X) pe
example, in ),"*, and attains the value of 4" This assirrirptir
not introduce difficulties in the classification, but requires
additional terms in the transformation to describe the'nonli

The real
channel
cofrect.
, k2n|,etn __

T

(t)

For comparison we may use

(4)

shape: r(l"r), i:1, . .

the linear approx
a, of lhe basic

ln,

)- & /."" 42n.LJ b2 | -"' 't',
i:l

The periodicity of the function thus defined makes the
pendent between themselves, for example, [9]. Then the
oI au from (1) equals to

(2)

(3)

teih-i1 A1 | fi

o u: q #V J{*t* 1,7-)'i"' lff
The coefficient of variation of au is respectively equal to

ln
VJ

l" hn

[(ui+u,."-r) 
sinz a (]"r+Ir-1)

tn
bn

2'Iti-ui-l sin ff (li*Ii-r)

the variation coefficient of. r,

Vi:oilVi:Q.
The comparison between (3) and (4) shows that it is p

ft values, i. e. for main harmonicg, to obtain Vu>I, bei
the denominator of (3) is a sum of terms of different si
the discrete series of 32 values (linearly approximated) To
46, 43, 42, 47, 47, 40, 40, 41, 41, 42, 38, 3-6, 28, 29,'4g,

even for small
the exoression in
For example, for
r(1"): 53, 51, 48,

53, 99, 85, 65,
50, 38, 33, 35, 30,27,45,53 under ft:S we obtaifli Vp- 'a-8,8 q'
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When the discrete Fourier transformation is appiied
known relationship between the Fourier series ioeffic

to obtain
s and

Li-) j: L1,,. j.

n:2, the

vh
its

version has to be applied [21].

Appendix 3

I. Autocorrelative function (for exampl e [22])

x G): .t tr(1./)-7(1") lfr(]",afi-V
i:l

where

V(X)- 2 r(X,)lm, j:0, l, 2,,, ., ffi-t,q:(?v1
i:l

II. Power autocorrelative function [8, 18, 28]

c,,, (d: )\ | r(1,)-r(1" ,*r)ln
i=l

a is given by the user, for example, n:0,8; L;2;,.. t

gorov function is obtained [22j)
j:1, . . ., ftil2 Ior m
j:1,...,(mal)12 lor nt

xi as for K(t).
III. Integral (mean arithmetic) transfornation [241

I (7,):+ Z ,&,), I:1, .

l=l
IV, Combined transformation [24]

L (.c): s,, r lr (\l: ) | r Q)- r (t,a
i=l

j:1, ,.., rn'12 for ru even,

j:1,...,(mal)12 Ior m odd.

Transiormations I, II and IV are invariant with re to an additive
stant, i. e. they are filter of systematic, additive and a riori unknown er

All the transformations shown are irreversible. ratios between I the
coefficients of variation of I, II and untransformed SRS re obtained in [18,120]l; b) random vafues

e uniform comoonbnts
ll and are measLlred

under the following limiting conditions: a) or: Q.ri,Q
r; and 11 are interindependent; c) the differences bdtwijeii
of the mean vectors ro and r, of two classes are sr
with 0<1. Under these conditions, from [18,20] it f
g_o.e]ficient Y" _of gwt(ri) is minimum at n:l (z-inte1

even,

odd,

)o,

) and it follows
[23] that V|:t, is smaller than Vo and with n>B tuom V, " 14 is
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. In [2al the evaluation of transformations III and IV is
exhibits their effectiveness with reference to the reduction r

rQ value. The evaluation is performed under limiting conditio
ve-mentioned.

Appendix 4

Enthropip and dioergence transformations

I. Enthropic transformation [9, 12].
The matrix 4 of the linear 

-transformation x:Ar is d
minimize the enthropy

ft,1t7j: - | p(rluli) Lnp (rla)dr, j:1,. ..,- J- "
(r)

where the integration is in the r space of SRS, ary is deno
class, and p(rluoi\ is density of probability distribirtion for
ximum uniformity (structuring) of set {p(r/rrr;)} corresp.onds I

ponds to minimtzation of the dispersion' in- various 'dist
expected to improve the identification of the classes.

variation,coefficient of untransformed SRS. The last esti
ximative.

The upper. ratios are deduced under conditions that
(for example, the covariation matrices are not diagonal).
orientation in the effectiveness evaluation of the trinsfoima

Under equal covariation natrices K ol the M-th cl

the linear transformatio
in infornration) between

I

2.
Himmelbl4u, D. M. Process Analysis by Statistical Methods. M
Yanev,.T., D. Mishev, Experimenial plinning for complex test

a matrix of eigen vectors.
II. Divergencelransformation [9, 12].

The matrix .4 is determined foi
maximize the divergence (difference
classes

I,u: [ [pi t)- p o,(r\ m ffi ar.

Under equal covarlatiolllmatrices Kt:Kn the maximu
obtained equals the risk function for 7 and & classess under
cis:cti {see Appendix 2). Therefore. it is assumed that /,. I

oerformed which
f the risk function
similar to the abo-

SO AS

on of the 7'-f6
e j-th class. Ma-
^F/-rn. This corres-
ons and may be

.4 is obtained as

n(: Ar, so as to
he 7'-11r and k-th

divergence thus

to

the condition that
cj*:cnj (see Appendix 2). Therefore, it is assumed lhat liu re may act as a
measure of distinguishing between classes

genefa
tion of ,4 relates
method to maxi-

mize I for a set of ll,f classes so that secure reduction'of ( may be obtained.
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MareuarzKo-crarucTr{qecKr,Ie MeroAbr rnaccuQuxaql
cneKTp a JrbH brMr,r oTp ax<aTeJr bHbrMr{ x a paKTep r{cTr.rKaM

T. flxee, X,. Muwee

(Pearorr,re)

flposeAeu cpaauurenrHufi aHadrrs cyxrecrByrorrlHx
cneKrpanblIblM14 OrpaxareJrbHbrMtr xapar(repr4crnrarrau (CO
sosaHnr?. flpeAtox_e!{u MeroAr.rKa H 6noKosas crpyrrypa r

x,rlaccu$uraqnr,t COX lt aKTyanr.rsarlnrt napaMerpoB Knacc
Meto4l.lxa ocHoBaHa Ha no4xoAe Eefieca B pur<ltMe

crepHoM aHannse B pexr.rMe 6ee yvnreas. Buno.nnirorcfl r
o6paeonanns COX c qenbro yMeHbrxeHr4r Qynr<qr.rra pacKa.

pHcKa.

MaJrbHoe rrncJro KaHanoB npu6opa nonyqeHns COX, 4ocraro
THrrecKoM r<naccnQnrarope Ans Aocrr,txen[ff ea4anuoft
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