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The resolution of the problems of the earth surface and
sensing relates to the measurement of various quantitativ
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¢ parameters of the

electromagnetic field. These are mainly parameters of the solar radiation, reflect-
ed from the earth surface and transformed by the atmosphere, as well as of
the proper thermal radiation of the earth-atmosphere system.

We have to mention first the spectral reflective si
particular the spectral reflective coefficient (SRC).

The SRS is a photometric function representative of
structure, dissipated from the various elements of the sur
tural formation, The SRS is a multiple function of variable
physico-chemical and biclogical properties of the studied
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and the conditions required to obfain the SRS (illumination, atmospheric con-.

ditions, etc.) That is why the SRS is a multifactorial func
cific information on the objects it has been obtained from.

L SRS features

In order to complete a SRS classifier (see point IL), it is reas
factors that define the SRS values according to some of the
Further ‘feature’ will mean a factor that affects the SRS if
ed way. The features may be grouped as follows:
A. Primary features — defining the function of refle
trapped at the input of the measurement system;
a) intrinsic features of the studied subject:

— subject-specifying which characterize the elementary

of the subject properties;
— geometric (shape, surface, structure, efc)). ¢
b) external features (atmospheric conditions, iljuminatio
perature, soil and air moisture, soil electroconductivity, orie
surement system, etc.),
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B. Secondary features which are the SRS valugs, measured in the indjvi
dual channels of the multizonal measuring systems.

C. Generalized features obtained in the processing of the primary and
secondary features after being treated with certain operator (mathematical,
taxonomic, efc.). The generalized features may be grouped into:

a) generalized primary features, for example, type-kind and subkind, form-
ing the taxonomic features within the matural classification of the subjects:
soil, vegetation, water, eic.

b) generalized secondary features obiained after mathematical transforma-
tions of the SRS,

L Aim of the SRS analysis

The necessity to study and classify the SRS results from the possibility of
their application in agriculture, geology, ecology, etc. The formal expression of
the SRS applications in this respect is;to define the relationship between the
SRS and the other features (primary and secondary-generalized), in order to
resolve the reverse problem; based on the SRS information to reconstruct par-
tially or entirely the values of the primary features (and their generalizations).
Such a reversible relation is the classifier, It could be compiled on taxonomic,
probabilistic, set-structured, regressive, physical modelling, etc. principle,

MIl. Specific features of SRS

The SRS are random functions obtained in discrete shape {spectrum along
the wavelength) under conditions of incomplete apriori information and signi-
ficant accompanying noise. These specifics require the implementation of sta-
tistic-probabilistic techniques for the SRS analysis.

The larger portion of subject-specifying features (including quantilative ge-
neralizations) have joint conditional distributions in the multidimensional space
of the signatures that, as a matter of fact, are not intercrossing.

Further the conditional distributions will be briefiy Ireferred to as distri-
butions only. In this sense such features may be denoted as discrete (Fig. 1),
and at the highest leve! of generalization as qualitative. Some of the subject-
spesifying featurces (and their generalizations) characterize the state of the given
subject only (for example, various evolution stages) and may have intercros-
sing distributions, but of differentiated modes, i e. they are quazi-discrete, The
external features (parametfers)may have largely overlapping distributions result-
ing in smooth transition of the parametric surfaces into the multidimensional
space. Such features may be denoted as continuous (quantitative). In the course
of development or formation of the subject, for example soils, the transition
into a stage (or type or kind) possibly can be performed smoothly, but for
the purpose of our Clagsifier well-shaped states are of interest and this defines
the necessity of introducing the quasi-discrete features. Regardiess of the even-
tual smooth fransition between them, the probability of distinguishing them is
defined with the possibility of identifying various states of the studied subjects in
their set of features, i

Another important specificity of the features is that they are random mag-
nitudes in terms of our lack of knowledge on their expected values in the
progress of the experiment.
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a) The primary features (and their generalizations) are random due to
inaccuracy of the measuring instruments and insufficient volume of the repre-

sentative samples in the course of the experiment,

Fig. 1. Discréte and quasi-discrete feature
distributions

’ ’
X1, %9 — disvrete features ;
r LEd
X] 1 ¥g — guasi-discrete featutes

F — disirlbution density ;
o — parameter

by The SRS are random functions due both to the reasons innumerated
here and in a), as well as fo the impossibility fo study all primary features

affecting the SRS. This problem will be discussed in detait

IV. Major problems

in point IV,

As it was already mentioned, the main purpose is to define the relationship between
the SRS and the other features. The precise analytical sha'Pe of this relation-
ship still seems an irresolvable problem. The various stages of approximation

to this task could be formulated as follows:
Physical model of SRS.

At the available state of our knowledge this is possible only for some
particular relations hetween the SRS and the primary features. The modest
resulis attained by now do not permit large-scale applications in agri-

culture.
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Statistical Model of SRS. : _

This is realized with the determination of the regressive dependence (sur-
face in the multidimensional space of the feature) between SRS and a given
get of primary features or their generalizations. There is no available method
by now tfo define the confidence regions of such a regression in the general
case, when both the features and the dependence value (the SRS in this case)
are random variables {1]. The Classifier procedure requires fo know these con-
fidence regions. Relatively easier is the problem of regression coefficients de-
termination. This can be done using, for example, the method of the maximum
likelihood [1], the method of least squares [2], etc., and the regression is traced
between the i-th component of the SRS r vector and all the k-th components
of the & vector of the features, £=1,..., K

r=f{as, ..., @), i=1,..., m-channel number for SRS.

The confidence intervals of the regression may be defined with certain
inaccuracy with the available techniques (which require for the independent
variables of the regression to be determined variables) if we can ensure that
the relative variance (measured for example, with the variation coefficients) of
the primary features (and their generalizations) is at least of an order smaller
than that of the SRS.™

The evaluation in this respect may be obtained, if we compare the vector
of the relative errors 8, of the vector @ of the primary features (including
their generalizations} and the vector of the relative errors 8§, of the vector
(A, o) of the secondary features (incl. their generalizations). If § is assumed
toc be measured with the variation coefficient, then §,=S,/p, where y; is the
average value of the /-th component of r, respectively a, and S, is an estimate
of its mean square deviations. Basic sources for 8, and 8, formation are res-
pectively (p. A for 8, and p, B for §):

A. a) Test field measurements:

i. Errors from the measuring systems.

ii. Errors from the interpolation and exirapolation of the measured data,
when studied areas are large and with various conditions (and they must be
such in order to receive statistical representation of the data), therefore measu-
rements of sufficient coverage cannot be performed.

b} Remote sensing (helicopters, airplanes, bailoons, satellites):

i. Errors from the measurement systems,

il. Errors from interpolation and extrapolaiion of the measured values (as
for p. A. b).

B. a} Test field measurements:

i. Errors from measurement systems.

ii. Errors from insufficient knowledge on SRS yielding conditions (mainly
in evaluating the illumination conditions). _

iil. Undetermination of t in the result of the fact that not ail the intrinsic
and externat features are Included in a.

b) Remote sensing: _

i, Errors from inaccurate evaluation of the SRS yielding conditions (illumi-
nation, atmospheric state, eic.).

il. As in B, a, iii.

All the features incorporated in a (if properly selected) are independent
from r (but they also might be interdependent) and affect the r vatues on the
cause-eifect scheme,

Present experience shows that the @ and r component distributions are
close to. normal. From the definitions in A and B and the experience acquired,
the following conclusions can be made:
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C. 85m and 8s,, are commeénsurable respectively with
§zpe is commensurable respectively with 8.

6aa1 and 8z, and

D). 8p43 and dass are commensurabie respectively with (84,2 and 8as

P

Fig. 2. Confidence regions of regression surfaces

a — three-dimenslonal regresston surface F and Hs confldence
region Str

& — two-dlmenslonal projects of confldence reglops Q R and £
and thelr  cross sectlon ﬂRI.li

The errors from D are much larger than from C. The a
tal possibilities provide for a significant reduction of &uus

vailable experimen-
only as compared

to the other § from D. Therefore, a regression with confidence intervals de-

termination can be effectively traced (at least at present) ¢

nly between r and

« on test field data, if a sufficient number of well planned experiments is

available with 842 is at least an order smaller than 8z4s.

The possibility {o obtain regression with a confidence region still does

not lead to an easy practical application, at least due to:
1. The confidence regions Qp (Fig. 2) are defined for
face parameters and the classifier requires the confidence ¢

the regression sur-
egion of the indivi-

dual result Q,~0pN0Q; to be known, where Q¢ is the [sample value of €.

4 Kocusvecky uzclefpaling, gH. 5
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2. The determination of Q, and Q,5 is telated to significant computation
difficulties. IFig. 2 shows the case of two dimensional regressions (& contains
two fcatures). Even in this rclatively simplified case the analytic {and respec-
tively the automatic) determination of Qj is significanily hampered. We should
add to the necessity of plotting the Q, projections over the coordinate system
axes the necessity of knowing the confidence inlervals of the individual para-
meters {leatures). Additional difficulties result from the determination of €
Certain facilitation may be achieved if r is obtained as a mean square from
the multiple resolution elements (RE), each of a dimension representative of
the least possible RE, already inarked with the properties of the studied class.
Then Q5 will tend to Q, This case reveals the problem of determining the
minimum R dimensions. Anyway, such a problem should be resolved in gene-
ral prior to the large-scale SRS measurements, in order fo determine for each
class or theme of classes (although approximately) the optimal RE dimension
in agreement with beforehand selected criteria. In [3) there is a solufion through
which the optimal RE dimension is defined in the course of the experiment.
Certain general methods and instrumental requirements for site-testing in the
ground-based studies of SRS are given in [4,5].

Another problem related to RE of SRS is the case when mixture of two
or more thematic classes is available in RE (i ¢. such that will be of interest
to the interpreter) and a separation of this mixture is required. In gencral, the
separation of SRS mixture i3 a problem of two main aspects:

— separation of a mixture from SRS distributions obtained from a RE
set (pixel), within the limits of which RE there is no mixture of SRS of diife-
rent classes, and

- separation of SRS mixture, obtained within the limits of one RI.

The first problem is closely related to the selection of optimal RS dimen-
sion. Under proper sclection, if possible, i. e. if a plateau exists within the
limits of the studied region, the problem does not cxist al the interpretation
level. In the reversible case the SRS distribution from various RE is obtained
in polymode. Under defined conditions, for cxample, identification of the dis-
tribution fype, the component number determination is perforimed with the well
known methods [6]. ’

The second problem requires solution when {we or more interpetation
classes are mixed within the RE limits [7,10] and their percentage participa-
tion is sought (weight coefficient) in their collective SRS, Such case is rcpre-
sented, for cxample, with series of agricuitural crops divided by soil strips.
The problem is solvable in the statistical sense, if the class distribution num-
ber is known for the classes participating in the mixture and their parameters.
Then the confidence intervais can be defined for the weight coefficients when
sufficient channel number in the SRS measuring sysiem is available.

In coitclusion we may say that the claboration of general regressive func-
tion r{A o) is still very difficult both on methodological |and applicable com-
puting level. Therefore, in near future it is possible fo obtain only particular
regressive dependences of largely limiled « dimensionality. Nevertheless, we
consider that even so the information will be useful {or the SRS interpretation.

Probabilistic-set classifier

This classifier isbuilt by comparing the confidence regions of the primary features
and their generalizations with the confidence regions of the SRS or their trans-
formations. The adequacy of this comparison with the available apriori infor-
mation, as well as the updating with the experience acquired is controiled by

50



the interpreter. This appfodch is suitable for the discrete
features mainly, The ma
classifier are:

a) training — with and without supervisor,

b} classification and new information accunulation, |

¢} updating,

d} dimensionality reduction of the features space in |a given thematic
class set,

Further, a largely simplified scheme of the SRS classifier is applied. This
is compiled within the attempt to balance the two basic coniradictory require-
ments : application simplicity and sufficient accuracy of the dlassificaton,

The following exposure containg in brief and in a time-generalized form
the fundamental information for the structural umits of the [suggested scheme
and also a brief comparative analysis of some available methoils and approaches
related to the discussed problem. |

land guasi-discrete
jor siages in the compilation and ogiﬁcration of such a
|

V. SRS C(lassifier

1. SRS Transformations |

The basic criterion of effectiveness for a given transformatiori is the risk func-
tion R (Appendix 1). In a fixed set of classes the transforq'lation which redu-
ces R to a higher degree should be adapted as more efficient. The evalua-
tion of R in most of the cases is difticult. Some indirect criteria are known
that are used as alternatives in first approximation of R linear and nonlinear
functions of the inira- and interset class distances {clusters respectively), en-

thropic criferia, etc, In the casc when the class distributions
mal we assume as the clearest and in many cases directly pr

tionship between the variation coefficient V' of # (by comp
=Gy frp i=1,..., m — channel number of SRS. Further
it will be preferred as a measure of effectiveness for the tra
ing R. The main fypes of transformations that are availabl
1.1, Orthogonal {expanded by orthogonal functions).
a) non-cigen systems of orthogonal functions: Fourier,
Vilenkin-Chrestenson, orthogonal polynomials, ctc. No direct

as to whether the use of these cxpansions coefficients as
transformed spacc results in ¥ reduction. It may be demon
lar that for the [Fourier transformations such a
(sec Appendix "2).

Another defect of these transformations is that when stee
available (for example, vegetation), a largc number of expat
is necessary which increascs the dimension of the transfor

these transformations assume that SRS are periodic [functior

mise with reality which results in description inaccuracy.

b) eigen systems -
version a method of the main components). The advantage
mations is that no SRS periodicity is required here, The . di

that the eigen systems of the j-th class is optimal with resp

Ol

reduction iy

transformations of Karhunen-Loeve

are close to nor-
bportionat the rela-

onents) and R:V,
1, when possible,
1sformation replac-
2 arg:

Walsh, Hadamard,
data are available

romponents in the
strated in particu-
not guaranteed

D SRS sectors are
sion components
ned space. Also
18, i, e. a compro-

(in the discrete
of these transfor-
sadvantage betng

ect to the econo-

mic class description only for this class, and not for the other classes from

the classifier set examined. That is why, the switch-off of s#xmc SRS channels

after the analysis of the given class in its eigen system may megatively affect
|
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R within a given situation of the class description in the set (for example, it
is possible to identify well some of the classes precisely in these channels).

L2. Autocorrelative  transformations (some formulae are given in Appen-
dix 3).

The advantages of these transformations are: dimension of the transform-
ed space not larger than thal of the primary space; the variation coefficient
of r in the transformed space is smaller than that of the primary space ;| sim-
ple calculation operations for {ransformation. As a disadvantage we may point
out the ambiguity of the transformations If and IV in the sense that equal
aufocorrelative functions may be derived from various functions, But this am-
biguity includes a class of symmetrical functions to the coordinate axes, and
such symmetries cannot be found in SRS of the natural formations over| the
Earth surface.

1.3. Enthropic transformations {Appendix 4).

As it is already known, they are realized in cigen  coordinate systems [9,
13|, and, thercfore, the summary of p. 1.1. refers to them also,

1.4. Divergency transformations (Appendix 4).

They lead to the optimal results in the sense of minimizing the defined
divergency only for a given couple of classes and, therefore, the disadvantage
of the eigen transformations from p. 1.1. In addition, they involve a very lar-
ge number of calculations, and information losses in the real case in unequal
covariant matrix of the classes [9].

t.5. Metric measures for similarity and distance optimization bewteen vec-
tors-realizations.

According to the type of the distance metrics, these transformations divi-
de into: (A) Euclidian; (B) Mahalanobissian, etc.; and by the optimization
criterion info: (a) minimizing intraset distances; (b} maximizing interset dis-
tances, and (c) mixed,

i. Complex (in the sense of a cerfain criterial function) distance optimization
19, 11, 12, 13| and ii. Serial realization of a) and b). Usually (A) methods are
based on linear transformations and relate directy to {a) and (b). (A, a) trans-
lormations lead also to enthropic transformations. The non-parametric Patrick-
Fisher transformations [13] use the exponential function as a criterion that increa-
ses with the expansion of the interset distance and the reverse, and relates to {(c).

The advantages of these transformations are mainly two: they have a com-
pleted analytical technique for determination of the transSformation matrix, and
provide possibility to improve the class separation in the sensc of the defined
criteria, but without a direct link with 7.

The disadvantages are grouped into: i criteria {a) do not guarantec sepa-
rately the obligatory decrease of R; il. criteria (c) make it possible to evaluate
in explicit form the increase of the class separability only when there are two
clagses, while in the gencral case of many classes (especially when the prima-
1y space is populated with a large deasity, it is difficult to evaluale before-
hand the effect of the global disiance change between the realizations. Des-
cription of other metric and nou-melric clusters-atgorithius is given in [9, 11].
The possibility for their application in SRS classification is probably smaller
than of the techniques discussed here.

This brief comparative analysis provides cerfain advantages of the auto-
cotrelative transformations, because it is possible io obtain with them uni-
versal (for the complete class set studied) improvement of the class separa-
bility, measured in the first approximation with the varidtion coefficient V land
estimated by now for the ptimary space only, and not for the other types of
transformations {These transformations also relate to simple computing operations)

82



As a gencral disadvantage of all the mentioned transformations, we shall
note the absence of a clear analyticallink in the general cas¢ of unequal co-
variance matrices of classes between the risk function in the primary and trans-
formed space. Due to this the transformation effectiveness ¢an be evalualed
only approximately in an amalytic mode. After the transformation, direct cail
culations of R must be perlormed for cach beforehand given class set with a
theme compiled in the Clagsifier.
2. Transformations to avoid ill-condifioned covariaiion malyix
When the channiel number of the system for the SRS yicld is large, for ex-
ample 32, there is a possibility for the determinant of the covariation mairix
of certain classes either fo become smaller than the computer| zero (in the case
when the SRS are reduced to speciral illumination coefficients smaller than a
unit, and therefore, with dispersions of the 107! order), or fo exceed the up-
per computer limit (for example, when the quantization leve| number of r; is
of the order of 100-200). A possibility to avoid this ill conditioning due io scale
effect is provided, if the primary SRS data are this multiplied with a suitable and
equal for all SRS number or through the division of each SRS to ils mean
arithmetic: this means a reduction to a relative coordinate system and loss of
information for the mean class vector, except if it is not introduced as an ad-
ditional feature. The transformations discussed arc not cffeclive when the de-
terininant is ili-conditioned in structure,

8. Subtraction of submatrix

A possibility of reducing the input matrix from dimensions
sion {m' X n) is foreseen when it is possible to decrease dimens
mary space of the features.

{(mXn) to dimen-
onality of the pri-

4. Cluster analysis

criterion of simi-
asure of similarity.
etrics {for examp-
gorithms into two
values through the

It is applied for grouping the input daia by some formal
tarity. The quantitative expression ol this criterion is the me
Usually it is selected as ‘distance’ in space aprioriselected mi
le, Euclidian). The following procedures divide the cluster-al
groups: (a) subjecting the measure of similarity to threshold
realization of non-equalities, and (b) optimizing the selected [function of this
measure, in order to define a criterion (most often for this purpose the frans-
formations from 1.5.are applied). There are tens of well-known clusier-algorithms

{nearest necighbouring maximum distance, [SODATA, etc.} [9

putations of inter- and intraset distances is performed mair

irom {b). These operations make difficult the algorithmic ap
number of vector-observations that are subject to clustering
[12). Since in the real case of remole sensing data (and cven
the SRS their number will be larger than 109 it is recommenc
application of more simplified cluster-algerithms) mainly thos

5. Automatic controls

5.1, For claster population: if population is less than the cri

user) the cluster is not analysed and is entered into the m

12, 13]. The com-
ly for algorithms
plication when the
is larger than 103
test field data) for
able to fix on the

e from (a).

tical {given by the

emory.




9.2, For normal cluster distribution : in satisfying the requirements of a
given criterion of normality the vector-observations forming the cluster are
passed for the calculation of an average vecior and covariation matrix.

5.3, For ill-conditioned covariation matrix.

6. Normal distribution simulation

Basced on average vectors given by the user, a set of normally distributed
vectors is obiained, i e. classes of normaily distributed |vectors are modelled.
Such data file is necessary for the comparative study of the effectiveness of

various transformations or other programs when the real data available are in-
sufficient.

7. Compilation of classifier

7.1, All clusters satisfying the controls (incl. the operator control of clus-
tering accuracy — sce cxplication in 7.5) and all classes formed by the user
at the input of the main program are passed for computation of average vec-
tor and covariation matrix. Afterwards the information is storaged in the Clas-
sifier, The storage may have various variants in dependence on what type of
transformation has been applied for its compilation.

7.2, Storage classes limits: (a) with Bayes approach-—the limits depend on
the set of classes which at a given stage of classifier compilation arc compar-
ed in defermining the risk function. This approach ensures minimum risk func-
tion; (b} in beforehand limitation of classes.

L. Mulfidimensional confidential paralielepipeds with  axes parallel to the
coordinate axes and multidimensional confidence cllipsoides whose axes have
been obtained with sufficient statistic material for the classes {after a training
procedure}; in this approach the computing operations are largely facilitated,
but the value obtained of the risk function is not mininium, Anyway, solution
may be looked for at apriori given admissible upper limit of .

ii. With linear and non-linear decision functions: in| this case — the re-
gion of a given class is localized with limitations of some of the multidimen-
sional planes and non-linear surfaces. This approach is related to the following
significant disadvaniages:

— even when the discriminators are lincar at a class number larger than
20-30, the oblique multidimensional linear surfaces are complex and result in
an inadmissibly large number of computations; in the case of SRS «classifica-
tion, the class and subclass mumber subject to identification should hardly be
smaller than several {ens;

—- probabilistic evaluation is difficult for the classification quatity, more-
over that the larger part of these algorithms do not permit probabilistic eva-
luation and become cycling when the elasses intercross (an exception is the
algorithm of Ho-Kashyap [9]); iil. In the statistic algorithms for obtaining a
decision functions: stochastic approximation, perception approach, potential func-
tions, ete. In this case the convergence of the algorithms to the Bayes classi-
fier is very slow |9). This disadvantage will be manifested particuiarly strongly
in the SRS classification when the dimension of the feaiure space and the
class number arc of the order of several tens and this is the real situation.

Due to the disadvantages demonstrated, the further procedure will consi-
der the limits defined in (&, b. i)

7.3. Risk function computations. Case 7.2.2 is computed when apriori in-
forination is available on the class distribution, their apriori probabilities and
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the loss matrix, Advantages : minimum Riayes is guaranteed. Disadvantages: usually
the apriori information is not available, assumptions m simplified version are
needed to be adapted and to be updated in the process of Classifier compila-
tion. Anvhow, when the form of distribution can be assumed with sufficent
certainty (in this case the experience acquired in SRS is encouraging [14, 15,
16]) and there is a possibility {o increase the representative sample to the vo-
lume required, the Bayes approach is recommended [17).

Case 7.2b has the following advantages as compared with 7.2.a: R con-
stapt limits simplified computation; and disadvantages: R value obtained is
not minimunt at the expense of the cutoff ‘tails’ of the distributions in the
formulation of the class constant limits, The upper Hmit of Rigpe(, ot may be
caiculated with the ‘tails’

7.4. Classification of newly added vecior-observations. The referring of
the newly added observations to a certain class in the Classiflier storage (to
fnone in particular} is defined with the verification of the non-equality system:
in the case 7.2 as obtained with the principle of maximum likelyhood, and in
the case 7.2.b, 1 — from the class limits.

7.5. Classifict learning. In the scheme suggested the learning phase is rea-
lized as follows:

Unsupervized learning: through the cluster programs in agreement with
the introduced formal criterion in them for similarity between observations.

Supervised learning: (a) at the output of the cluster program where in
interactive mode the operator controls the clustering quality and corrects the
erroneously grouped observations, based on the available apriori information ;
(b) At the input of the wajor program: through apsiori classified observation
files, for example, from test field measurements; ¢) updating of the Classi-
fier storage. The verification of the normal conditions guaranteed the necessa-
ry closeness of class distributions to the normal in the classifier [17] and, the-
refore, guarantees the Bayes mode of learning of the average vector at sam-
ple volume tending {o infinity.

The supervised learning is performed with apriofi information, and com-
parison between the confidence SRS regions (and their transformations) with
those of the generalized features.

8. Reduction of the feature space dimension

In many cases the identification of a given set of classes can be performed
with a beforehand given identification quality (for example, through the permis-
sible maximum R value), with a portion of the information obtained in the
experiment {for example, with the SRS values of some channels only). The reso-
lutjon of this problem results in both direct economy of |computations and in
optimization of the technical problem with regard fo the measurement systems
and their exploitation capacity. The resuit from the resolution of siich a prob-
lem may serve as a criterion for the effectiveness of ceftain SRS transforma-
tions. Some Basic methods for the reduction of dimensionality of feature space
are given in [9]. ’\

The precise resolution requires a study of the complete combinatorics of
subsurfaces formed with the subset of features (primary and generalized) and
a defipition of those combinations that satisfy the selecfed criterion of the
classification quality. In the general case of unequal covariation matri-
ces and non-linear decision functions this problem is difficult to be realized in
regard to the computation efforts involved. But if we assume that the cova-
riation matrices, though unequal, are diagonal {of diagonals equal o
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those of the real matrices) and the classes are limited with multidimensional
parallelepipeds, including the confidence ellipsoids whose axes are parallel to
the coordinates due to the diagonality of their covariation matrices, fhen the
problem reduces to a problem of technical diagnostics. A possible solution is
suggested in [18], where the V value is the criterion for the classification
quality. In the scheme thus suggested the problem is resolved with the coni-
binatorics program. The restrictions introduced in the resolution of the prob-
lemt in this case resuft in the following : if the program provides an answer
that given subset of features is sufficient for the classification of the studied
set of classes, then this conclusion is preserved in the general case also for
the nondiagonal covariation matrices, but the risk function in the general case
will be smaller. The reverse answer that the given feature subset is not suffi-
clent for the set class recognition at a fixed value, is not a guaraniee that at
nondiagonal matrices the same result will be preserved.

9. Coupling of classified realizations with geographic coordinates
and contouring of the spectral homogeneous regions

In order to resolve this problem, it is necessary to provide accompanying
code for cach vector-observation through which the geographic coordinates of
RE can be compared. With 1he help of plotter-programs in a iwo-dimensional
coordinate  system, the coordinates of all the observations of a given class
are plotted. When simulfaneous visualizations are needed (graphs) of more
than one class, several well distinguished symbols are used., The computation
of the geometric characteristics of the contoured régions can be provided with
upplementary programs: perimeter, surface, formfactor, efc,

10. Classifier storage updating

All classified and unclassificd realizations entered in the Classifier are memoriz-
ed according to the type of the classification programs (Bayes, mulfidimensi-
onal ellipsoid, etc.), and the type of the apriori SRS transformations.

After accumulating a given quantily of such data the updating is perform-
ed {on uscr’s request) in two directions:

A. With the already classified obscrvations the average vector and the
covariation matrix of each availahle class in the storage is updated. It is advis-
able for the purpose to use numerical models for brief computations [9]. This
approach assumes the implementation of nonmarked training sequences of SRS
in the classification of new observations, i, e, for which # is not apriori
known to which class they befong. Therefore, if in the classification mode at
the input of the program the maked training sequence is fed, the information
from the unclassified obscrvations cannot be used for direct updating of reso-
lution surface parameters. This may be performed, if the technigues of stochas-
tic approximation are applied for the iterative determination of . these para-
mefers,

B. With the unclassificd realizations to any classes in | the storage and
also with those that have not satisfied the automatic controls. For the purpose,
an input file is composed from them and the complete training cycle is per-
formed with it. Here it is possible to produce new classes.

In the process of compiling a thematic classifier of finite number M.y of
forming classes it is possible to obtain as an intermediate result Ry.yed
L Reonst, limpts When the nonequality M<C A1, exists, Thisis dile to the foliowing
Bayes SRS classifier operates with theoretical normal distributions that are de-
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fined In the interval (— oo, o) for each of the features. After the first learn-
ing stage (no updating was made) the class number is M< max (101 the real
case at the recent stage of knowledge on SRS not always the apriori precise
classifier content may be available even for relatively limited themes). On the
other hand, in the next stage, classification, again for the real case of space
and airborne data processing obseivations that may belong to M+ j-th classes,
J=M+1, ..., M, may be entered. If M<M,,., the distance between the
centers of M-th classes is relatively large with regard to the available filling
of the thematic feature space. Due to this and also to continuity of the nor-
mal distributions in the intervals (—oo, o), the Bayes decision functions limit-
ing the available classes pass away from the class centers. | Thus probability
increases for observations belonging to the M+ jth class to be classified as
belonging to some of the M-th classes if M+ j-th class is close {0 some of the M-th
classes. Such an crror of Il gender can be reduced, if the performed M clas-
ses are limited with, for example, confidence ellipsoids or | parallelepipeds of
smajler size and not with Bayes functions, but anyhow such that the sum of
the cutolf tails of the normal distributions would be admissllible, i. e, the error
of I gender would not exceed the apriori limit. Then the possibility for reali-
zation from the M+ j-th class to enter some of the M.th classes is consider-
ably rediced, except for if in general the M+ j-th class does not intercross
largely with some of the M-th classes. After repeated updating the classifier will
be refilled with new classes and when M — M, . then Rpiyes~Reons: Will be
ensured. Therefore, when the updating is performed: a) under condition M
<Mgax; ) with data of no apriori information as to whether they belong to
the M-th formed class only, it is recommendable to complete the classifier,
using confidence ellipsoids or parallelepipeds and only under M —Mumax {(the
criterion for this may be the absence of new class formation after repeated
updating within the theme) to apply the Bayes decision functions.

For the given confidence decision funcfions it is possible at fixed value
M (by number and class content) to minimize the risk funclion [19]. Of cour-
se, the minimum R, thus obtained wiil be larger than Rims, if realizations
belonging to the M-th class are entered only. :

VL Program package for classification of spectral |
reflectance signatures

When determining the structure and the content of a prograin package design-
ed for the classification of spectral reflectance signatures (SRS), multiple con-
siderations from both general and particular nature must be| taken into acco-
unt in view of the package effectiveness: scientific, economt;c and applicable.
Some of these considerations were discussed in the previous chapters, Consi-
derations, related fo the experimental specifics of SRS obtaihiing and affecting
the volume of the computation efforts under application of | program package
for SRS classification, may be generalized as follows:

L. In the real caseof sateliite and nonsatellite information use for classifi-
cation or for learning files, thousand or iens of thousand SRS are applied
{vector-realizations in multidimensional signature space) as obtained from indi-
vidual elements of solution. '

2. Class and subclass number that is interpreted within| the limits of the
thematical classifiers, for example, for agricultural purposes, is of the order of
several tens, | ]
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3. The dimension of the primary feature space {the channel number of the
multispectral devices) in which SRS are obtained is also several tens for the
contemporary technical provisions.

4, The SRS distribution is in most of the cases sufficiently close to the
normal, due to which there are grounds to apply the respective statistical me-
thods elaborated for normal disiributions.

The major operational modes for the SRS Classifier usually are: training,
classification and updating. According to the selected algorithms for determina-
tion of the class characteristics, these three modes may be realized both parallel or
in sequence, for example, the techniques of the stochastic approximation requi-
re parailel performance of training and updating lo achieve more complete in-
formation use for the incrorrectly classified marked realizations in the training
sample, but this involves larger computation efforts, that| must be taken into
accounl due to the considerations in 1, 2 and 3.

It follows from the considerations 1, 2 and 3 ihat the necessity of decre-
ase in the dimension of the featurc space, where the SRS classification or one
of their transformations is performed, should be also considered. This can be
realized through appropriate SRS transformations and determination of the mi-
nimal feature combination (under beforehand given class' set) and thus to at-
tain the given threshold value of the risk function or of another criterion on
the classification quality [9). In the general case when the covariation mairices
of the classes are not equal, the relationship befween the risk function B and
the various criteria for classification quality is cstablished rather nonreliably
after reduction of the feature space.

Consideration 1 should be taken into account when selecting the cluster-
algorithms with preference to those where the training matrix is used in se-
ries, column by column, with no necessity fo be kept entirely in the opers-
tional memory, as is the case with the cluster-algorithms that optimize the
criterion functions from intra- or intergroup distances, etc. In cases similar to
the latter, the acceptable dimension of the fraining matrix is ne more than
1000-2000 vector-realizations.

Consideration 4 makes possible the use of probabilistic methods for clas-
sification that are morc precise than the cluster-algorithms or the determined
discriminant functions {hiperplanar, etc.} and provide possibility to compute or
evaluate the funciion of the average risk.

Accelerated computing procedures are applied to obtain separate mathe-
matical functions as the probabilistic integral in the mullidimensionat feature
space, the average vector and the covariational maivix of each class and the
algorithms for their updating, etc. in [27] an accelerated procedurc is suggest-
ed for classification by Bayes through replacement of some of Bayes deci-
sion functions in the course of the procedure with simpler criterion nonequa-
lities, and also through appropriate transformations of the covariation matriz.

Significant alleviation of the computation efforts may be obtained through
the application of the confidence hiperparallelepipeds as|a prefilter to Bayes
procedure of classification. In: this case, the verification of the belonging of
vector X to a given classisinitiated with a system of nonequations

(1} a“js&gbifr f—l,..-, i, j:I,...‘ n,

where m is the dimension of x, # is the number of classes in the Classifier,
and a; and &, are the limits of the hiperparallelepiped of the j-th class. These
limits may be determined differently, for example, so that the respective con-
fidence ellipsoid should be inscribed in it (determined |at a given confidence
level) or so that the shaping edges of the parallelepiped would equal the res-
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pective main axes of the ellipsoid (then the latter will be incorporated into
the hiperparallelepiped) and so on. In agreement with consideration 4, the di-
mensions of the ellipsoid can be determined on the basis|of the normal dis-
tribution. If under a fixed j at least one of the non-equations (1) is not ful-
filled, then the vector x does not belong to the j-th class (under selected
confidence level). In the reversc case the answer that X belongs to the j-th
class is not absolutely positive, because it is pessible that the Jj-th hiperparal-
lelepiped would have section €,,--0 with another A-th hiperparallelepiped.
Under a built thematical classifier the indices % of the classes for which
£,,74:0 should be kept in its memory for a given j and also when it is estab-
lished that the system (1) under fixed j is satisfied by x, Bayes classification
should be performed for those values of % only for which Q0. Similarly,
the classification with the help of hiperellipsoid may be performed. System (1)
requires simple compuiation operations without necessity |to compute the Ma-
halanobissian distance in a prestage and, therefore, we may expect significant
fast action of the procedure described. It is possible when we have significant
amount of closely located classes in the Classifier to perform a combination
of the upper procedure with the one sugested in [27] at the second stage
(when it is established that x satisfies (1} and Q,,+0 for|several values of k)
that will result in a greater acceleration of the classifying procedure, especially
in the case when the covarfational matrices of the classes|have eigen numbers
that differ in-between.

An example of the structure of a program package fpr SRS classification,

taking into account the above-mentioned considerations,
The denomination of the subprograms and their destinatio
!} —input matrix of data; 2 — multiplication of the
constant number; 3 - - cluster-algorithms; 4 — SRS transfo
plicatiéh of vector-column by normal law; 6 — verification
cluster-formed distributions; 7 — determination of a mean
tion matrix of the normaily distributed sets of SRS vecta
formations; (7, — through initial training file, 7, — through

is shown in Fig. 3.

n are as follows:

input matrix with
rmations ; 5 — multi-
of normality of the
vector and covaria-
rs or of their trans-
the method of sto-

chastic approximation, 7; — through updating with accumulated data for cor-
rectly classified vector-realizations); & — control of ill-determined covariation
matrix; 9 — computation of the risk function by Bayes; 70 +— computation of the
risk function under decision surfaces, composed with hiperparaliciepipeds and

hiperellipsoids ; 77/ — classification by Bayes; /2 — class
parallelepipeds and hiperellipsoids decision surfaces; 73 -
mension decrease of the feature space; /4 — subprogram
spatial coordinate system (plotter) of the vector-realization
class {spectrally homogenious regions).

File B contains the mean vectors p and the covariatio
formed classes as follows: B, — without pretransformation
B2 -— after transformation of the input matrix with some o
in subprogram 4; B; — after {fulfilment of subprograms
ment of subprograms £ and 5: B; -~ through training mats
ses are formed by blocks.

ile o contains the vector-realizations for updating.

In o, the information frem following groups is stored

a) clusters, where the quantity of realizations is sn
number pregiven by the user, the value of which is deter
ofgthe criterion of normality in subprogram 6;

b) clusters that have not satisfied the requirements fo

ification with hiper-

+ subprogram for di-
for yielding in XV

s, classified to one

n matrices K of the
on the input matrix;
i the transformations
53 Py — after fulfil-
ix in which the clas-

1aller than a critical
mined from the type

r normality in 6;
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¢) clusters or sets of vector-realizations, determined as classes of sub-

program 5, or through the training matrix, determined for file B. These clusters
or sets have ill-determined covariation matriz.

Input
()

Kss
- = - 8
; O A O
9 !052 Vg [ AL Al Al As
e === 2 | Y B
Ko 5o —
| Kef R | P
Sk | [75 ]
14 ] K, K
[a] [0 1] [12] [13]
— - =1 &
f Butput

Fig. 3. An example of struclure of prograir package for a spectral reflective
signatures (8RS} classifier

Information on the vector-realizations that is not classified to any of the
classes in file B is siored in o,

File ¢y confains vector-realizations classified to some of the classes in file
P {information of the field number of file § together with informaticn by which
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subprogram the classification was performed: 11, respectiv
this information is used in the updating).
L K]_l)

Through the various states of variables K, ..

operation is determined on the user’s request,
Prineipal modes of operation of the package are:

Training.

a} With teacher: this is realized with marked training

the final result is the formation of the classes in By, By, Bs
of the risk function for the set of classes obtained;

ely 12, is stored and

the mode of package

r input matrices and
and the computation

b) Without teacher: this is realized through unmarked input matrices (the

real case suggests operational conditions of incomplete
that pass through subprogram 3 (possibly in combinatio
the variable K; the operator may verify the correcines
based on the apriori information available, and then to ex
infroduced vector-realization in a given cluster from tf
o starl again the selected sequence of subprograms with
formed; the final result is the formation of the classes in
¢) For research purposes files By and B; are used in
are formed through subprograms 5, respectively & and 4
the possibilities of the various types of iransformations
to the size of the risk function and to the decrease in f
feature space (for the purpose subprogram 75 is used).
Classification,

This mode of operation performs the classification of {

realizations through subprograms 7/, respectively /2. If
performed in field B,, the vector-realizations are beforeha

apriori information)
n with 4); through
s of the clustering,
clude the incorrectly
e input matrix and
the new matrix thus
By and PBy;

which model classes
in order to verify
, both with respect
1e diniension of the

he unmarked vector-
the classification is
hd transformed with

the transformation from 4 through which the classes in By have been obtained.

Finally decisions for the belonging of the vector-realizations

are obtained in print,

and the vectors are sent to o, respectivelyto w, for updating of the classes
characteristics (using the stochastic approximation, the updating can be per-

formed in the real time mode).
Updating.

The updating of the classes characteristics (mean vec

matrix) from file P is performed in two modes:
a) through formation of an input matrix from data
of the two files afier which operation is performed as in

b} from file o3 in 7y, respectively 7., the vector-realiza

considering the field of file B that is updafed. File o3 con

responding to those of P and additional subfields in respec
Th

ram J/I or /2 was used to perform the classification.
dotted-line in Fig. 3.

‘The first version of the above.described program pa
the Central Laboratory for Space Research at the Bulgar
ences on FORTRAN 1V and, ASSEMBLER languages an
of OC/EC.

Chapters 1 to IV are composed based on works [25] ¢

V is based on work [26].

Conclusion

The approaches examined (major tasks) are of downward s

ity, resulting from available possibilities: physical models
probabilistic-set classifier. Undoubtedly, the physical mod

i

tor and covariation

in o, oy or mixture
the ‘training’ mode;
tions are introduced
tains the fields, cor-
t to which subprog-
ese are shown with

"kage is realized in
n Academy of Sci-
under the control

nd [28] and chapter

equence of complex-
regression models,
2ls are the most de-
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sirable result for the experimenter and the interpreter, but they are resolvable
in long-term perspective. The general regressive modeis are irresolvable in
practice by now, although partial solution is acceptable in principle with the
limitations as given above. The closest relative perspective for direct practical
applications on a larger agricultural scale is that of the third approach, al-
though the absence of sufficient apriori information and the disturbing atmosphe-
ric effect and other noise sources reduce its effectiveness.

Appendix 1

Risk function [9, 12]

Each SRS is rcpresented as m-dimensional vector r:fr}), i=1,..,, m-SRS
channel number. The compatible by a given criterion of similarity vectors ry,
- form the f-th class of population: N, k=1,..., M, j=1,..., N,

Consider the set of M classes, £=1,..., M each with multidimensional
normal distribution f(r/u,) in the space of r,, i. €. each class is characterized
with an average vector p, and a covariation matrix X,

With ¢, we denote the losses due to the case when the classifier makes
decisions for availability of subject from the /-th class, while in reality there
is a subject from the &-th class. The elements ¢, form the matrix C of the
losses, {=1,..., M.

We introduce decision surfaces S,; for the classes & and /. The possibility
to have error in unifold classification (of one vector r) is:

P fva f(rin)dr,

where Vy, is the volume, in which (through S,,) the 4-th class is defined. The
average value of c,, losses from all combination (%, {)and for multifold repeat-

ed classification {for many vectors r) is called risk function R and is obtain-
ed from

ey

27 PrCu f(/0) dr,

d=1

M
R=2
Ah=1

<~

el

where p, isapriori probability of the A-th class.

Usually it is assumed that ¢,,==0 and ¢, =idem=¢, i. e. no loss of correct
classification occurs and in incorrect classification all the |classes are assumed
to be of equal weight with regard to the losses. Under this simplifying condi-

tion ensuing from the principle of maximum similarity it follows that the equa-
tions for §,, are:

I | B!
D Suin T T = W K @ )~ )R — )] =0.

Equation (1) ensures the minimum R value.
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Appendix 2

Variation coefficient of the Fourier series coefficients und
linear approximation of discrete SRS

The real SRS are obtained in discrete shape: r{},), i=1,..
channel number, for example, m =32, the linear approxim
correct. In this case the coefficients a, of the basic or

sin k—%—,{t—?“- are expressed with {21
1 ‘- B k2 2
M T 4
(1) G=— 1 k—;(cos 5 kf—cos—Tl,.__l)
=
kr.
2sin <~ AR M : :
T oY . [E2m ;
= '"'m&s&;\,—% (Fy—#i_y)sin [T (e +h_)/2] .
ie=
We assume that r, are normally distributed random

persion o2=¢%? where g<1, for example, 0,03, Such an :
proportion between ¢ and the average vector g we introdu
[18, 20] of the comparative analysis. We assume also that
function of peried 7. In reality this is not true, and in
Fourier series of r(&), we have to assume that r(}) pef

er

, m. Under a large
ation is acceptably
hogonal functions

values of dis-

1ssumption of rigid
"¢ for convenience

r(A) is a periodic
rder to apply the
forms a jump, for

example, in A,, and attains the value of . This assumption in principle does

not introduce difficuities in the classification, but requires 1
additional terms in the transformation {o describe the nonlin
The petiodicity of the function thus defined makes the ¢
pendent between themselves, for example, [9]. Then the mea

of @, from (1) equals to

he introduction of
earity of the jump.
efficients a, inde-

n square deviation

o [A2m
Y sin? [%E 4%*

. Rm
2 sin - A

TREAN

2
—1

@

Te=¢

\/é {(u?+ i

The coefficient of variation of a, is respectively equal to

kT
{{n?Jruf_ﬁ sin® = (7\':'"!-?\-;——1}]!

(3)

-

{u;—u;—q) sin —kTE (g th—1)

pur

i
For comparison we may use the variation coefficient of #,
(4

The comparison between {3) and (4) shows that it is possi
k values, i. e. for main harmonics, to obtain V,>1, because
the denominator of (3} is a sum of terms of different signs

Vi=0,/l;=¢.

the discrete series of 32 values (linearly approximated) fof

46, 43, 42, 41, 41, 40, 40, 41, 41, 42, 38, 36, 28, 29, 48,
50, 38, 33, 35, 30, 27, 45, 53 under k=5 we obtain: V, =

_—,1.} ;

ble even for small

the expression in
. For example, for
r{i}: 53, 51, 48,
53, 563, 98, 85, 685,
"5m8,8 q.
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When the discrete Fourier transformation is applied to obtain V, the well-
known relationship between the Fourier series coelficients and its discrete
version has to be applied [21}.

Appendix 3

I Autocorrelative function (for example [22])

K= 2 r QD=1 r Qu+1)—r (M),

=1

where

FO)=2r0)m j=0,1,2 ..., m—1, yy=(h—Ay) j= A j.
i=1

IL. Power autocorrelative function {8, 18, 23]

€ (1)) = Z | ) —r (1)

n is given by the user, for example, =0,5; 1; 2;... (under n=2, the Kolmo-
gorov function is obtained [22])

J=1,...,m2 for m even,
J=1...,(m+1}2 for m odd,
7 as for K (t)
HL Integral (mean arithmetic) transformation [24]
1’(%):—:‘-2,T r(d I=1,...,m.
f=1
IV. Combined transformation [24]

L()=C;. [[r(\)}= %’ [ 1 ()— I+ ],

J=1...,mj2 for m even,
J=1L...,{m+1y2 for m odd.

Transformations I, Il and 1V are invariant with respect to an additive con-
stant, i, e. they are filter of systematic, additive and apriori unknown errors.

All the {ransformations shown are irreversible. The ratios between the
coefficients of variation of I, II and untransformed SRS are obtained in [18; 20]
under the following limiting conditions: a) 5,=¢.r, g=1; b) random va’)ues
r; and 7, are interindependent; ¢) the differences between the uniform compontnts
of the mean vectors r, and r, of two classes are small and are measdred
with 8<=1. Under these conditions, from {18, 20] it follows that the wvariafion
coefficient V, of C" (1)) is minimum at n=1 {z-integer) and it follows from
[23] that V=" is smaller than V, and with m>8 also from V,.V, is the
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variation. coefficient of untransformed SRS. The last estimate: m>8 is appro-
ximative. _ '

The upper ratios are deduced under conditions that differ from reality
(for example, the covariation matrices are not diagonal). They may serve as
otientation in the effectiveness evaluation of the transformations exposed.

- In [24] thc evaluation of transformations III and IV is| performed which
exhibits their effectiveness with reference to the reduction of the risk function
R value. The evaluation is performed under limiting conditiouslsimilar to the abe-
ve-mentionad.

Appendix 4 ' '

Enthropic and divergence transformations

L Enthropic transformation [9, 12]. '
The matrix A of the linear transformation x=Ar is determined so as to
minimize the enthropy
Hy=— { pcjop)inp wjapar, j=1,..., M
) '
where the integration is in the r space of SRS, oy is denomination of the j-th
class, and p(r/w;) is densily of probability distribution for the jth class. Ma-
Ximum uniformity (structuring) of set { p(r/o;)} corresponds to Hap,. This corres-
ponds to minimization of the dispersion in various distributions and may be
expected to improve the identification of the classes.
Under equal covariation matrices K of the M-th classes,| A is obtained as
2 matrix of eigen vectors,
I Divergence transformation (9, 12].
The mattix A is determined for the linear transformation %=Ar, so as to
maximize the divergence (difference in information) betweenthe j-th and &-th
classes

; 2i(r)
b= [ s O—pie)in Sz dr.

Under equal covariation matrices K;=K, the maximum divergence thus
obfained equals the risk function for j and % classess under|the condition that
Cjp=Cy; (s€8 Appendix 2). Therefore, it is assumed that /,, hlere may act as a
measure of distinguishing between classes j and k. |

In the real case K;==K, and p==p, Therefore, the definition of A relates
to large computing difficulties. Moreover, there is no general method to maxi-
mize [ for a set of M classes so that secure reduction of R may be obtained.
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MaTeMaTHKO-CTATHCTUYECKHE METOMBbI KNacCupukai iy
CHEKTPAJbHBIMH OTDaXKATE/IbHBIMH XaPAKTe PHCTHKAMH

T. Hues, . Mutues

{Peawume)

[Iposened  cpaBHHTENbHHI aganus CYWeCTBYIOMHAX METON0B KaacCH(UKaLHK
CHCKTPAMLHAIMY OTpaaTeNbHEMY XapaxrepucTaxamy (COX) npupoxmbix o6pa-
3opaHufl. [Ipefnoxedst MerToluKa ¥ GROKOBas CTPYKTYpa TAKETA NPOTPAMM IS
wnaccuduxaunn COX u axTyanmsauun napameTpoB kjaccn(ukaTopa.
Metopuxa ocnoBasa Ha Moaxone Beiieca B pexxume ¢ yunTeseM u Ha Kaa-
CTEPHOM aKAMH3e B pexkuMe Oes yumrens. Buinosmsiorcs npeasaputesbHble mpe-
oGpasosarns COX C neabio ymesbuteHus (GyHKUMM pHeka. OnpeiesseTcs MHHH-
MaJbHOE UHCAO RAHANOB npubopa noayueHus COX, H,OCTH‘I‘Ol?Hb]x B JIaHHOM TeMa-
THYECKOM KJAACCHOMKATOPE MR AOCTUKEHHA SafaHuofl (yHiunn prcka.

67



	volume 5
	Binder1
	67-3





